

SCARSDALE VILLAGE CENTER MOBILITY PLAN DRAFT

AN ELEMENT OF THE SCARSDALE STRATEGIC MOBILITY + PLACEMAKING PLAN 09/20/22

Contents

Strategic Mobility Plan Overview 3
Popham Road 4
Fox Meadow Road 20
Crane Road 24
Funding 30
Appendix A: Synchro Reports 32

SCARSDALE
FHI mitio

Strategic Mobility Plan Overview

The Scarsdale Strategic Mobility + Placemaking Plan is a communitydriven transportation planning effort to identify and address challenges and opportunities in the village Center roadways. The plan's goals are
to increase pedestrian and cyclist safety, provide access for all users, mprove traffic flow and circullation, activate public spaces, and incorporate sustainability. This document outlines recommendations for Popham Road, Fox Meadow Road, and Crane Road. These plans were developed in coordination with the Placemaking Plan, a separate report that includes ecommended concepts for Spencer Place and Boniface Circle.
The concepts developed for this Strategic Mobility Plan were developed based off findings from community and stakeholder feedback, planning documents, traffic studies, drone data collection from March 2022, and stakeholder feedback through a walk audit in March 2022, through comments on the project website (www.scarsdalemobility.com), via em and at Village Board working group meetings, a design workshop, and virtual public workshop. Additional detail and analysis can be found in the Data Analysis Memo and the Data Analysis Memo Appendix. The conclusions of this report are advisory and intended for general plannin urposes to help identify transportation safety needs that encoura pred ecommendations to improve safety in the study area.

Popham Road

Popham Road offers many opportunities for a redesign that includes improved bicycle and mproved pedestrian crossings can further mprove safety and promote non-motorized access to the Village Center. This section documents the background, findings from the
data analysis, alternatives considered, and the ecommended approach

Background

Popham Road is an east-west corridor running om the Bronx River Parkway to Route Village Center, and many use the road to access he Metro-North station via East Parkway or Depot Place. Popham Road is a two-lane road
from Lockwood Road to Route 22 Post Road Approaching the Village Center, the road widen to have a westbound right turn lane at Chase Road. Between Chase Road and East Parkway Popham Road widens to have a left and righ turn lane in the westbound direction and a
left turn lane in the eastbound direction This left turn lane in the eastbound direction. This less. Between East Parkway and Depot Place th road widens further as it crosses over the MetroNorth railroad tracks. In addition to through lanes in each direction, the westbound direction has right and left turn lanes at Depot Place, and the eastbound direction has right and left
turn lanes turn lanes at East Parkway. The lanes are also
wider at this location. According to the New York wider at this location. According to the New York
State Department of Transportation (NYSDOT) Traffic Data Viewer (2019), Popham Road has an estimated Annual Average Daily Traffic (AADT) of 12,224 vehicles.

Popham Road has been studied extensively particularly at the Chase Road and East Parkway intersections. At Chase Road, recent report recommendations included pedestrian visibility improvements, new lighting, a leading pedestrian interval (LPI) to give pedestrians a head start in crossing, and "No Turn on Red" signage. Previous
studies of the East Parkway intersection found a variety of challenges pertaining to pedestrian crossing, left turning movements, and poor visibility. Many of these observations were noted by participants in the March 2022 walk audit. Between 2015 and 2019, 28 crashes occurred at the Chase Road intersection, and 60 crashes occurred at the East Parkway intersection; the East Parkway intersection has the highest number of crashes of any intersection in the study area For additional information on the crashes and Appendix.

Findings
o provide additional data, a drone video of the Village Center was collected on Thursday,
March 10th, 2022 to assist in the understanding March 10 th, 2022 to assist in the understanding video spanned from the intersection of Crane Road and Chase Road to the intersection of Popham Road and Garth Road. This extent covered the entirety of the study area including all intersections on East Parkway and the intersection of Popham Road at Chase Road, East Parkway, and Garth Road. Drone video was
recorded for approximately a one-hour period between 3:49 PM and 4:49 PM. This period was selected based on qualitative conversations Indicating it is one of the busier time periods the Village Center. Drone collection was conducted without the presence of the Dine the Dale tent that is temporarily set up on spencer
Place during warmer months. The drone vided was subsequently processed to obtain individual racks for vehicles and pedestrians. The data was utilized to understand travel patterns of these users through the study area
incaings from this analysis pertairing to Popham Road included the following

- Only about one third of traffic on Popham Road consists of through traffic both entering and exiting on Popham Road. Approximately 50% of traffic on Popham Road enters Popham Road from Garth Road, Depot Place,
East Parkway Scarsdale Avenue, Overhill Road East Parkway, Scarsdale Avenue, Overhill Road, Chase Road.
affic on Popham Road
epresents the heaviest traffic flow in the study
figure 1. Popham Road over Metro-North Railroad | Looking West | Existing Cross Section

area. This queue storage of westbound traffic filled with turning traffic from Chase Road. Westbound right-turn lanes on Ponham Roa Westbound right-turn lanes on Popham Road are lightly used at the intersection or Chase
Road, East Parkway, and Depot Place. Each of these movements serve fewer than 40 vehicles per hour in the afternoon peak hour observed. This finding suggests that this space can potentialy be realocated for pedestrian bicycle, or landscaping use.
Speeds exceeding 40 mph were recorded. whe posted speed limit is 30 mph . (State law speeds of 25 mph .)
eedback from the public, businesse
ts, and the Village Board included the ollowing:

High vehicle speeds contribute to an environment that feels unsafe for pedestrians. Popham Road lacks bike infrastructure. The because it is infrequently used by cars. A bike lane is needed in the eastbound direction. Pedestrians face long wait times crossing they feel unsafe crossing the roadway. Leading pedestrian intervals (LPIS) could help with crossing times and perceptions of safety. - mproving the pedestrian environment ould help encourage people to park at the Freightway site and walk to the Village Center core. When the flexible bollards are damaged by ties, the holders become tripping hazards

The intersections at Depot Place and East Parkway have signals that are confusing to left lurning drivers who are unfamiliar with the
Trap." Drivers making left turns after the light has turned red assume oncoming drivers also have a red light when they continue to have a green light.)
The overhead right turn only signage is not
sible to westbound traffic in the right lane he bridge.
here is no signage prohibiting U-turns. The asymmetrical intersection creates sightine issues.

Alternatives Considered

With fewer than 40 right-turning vehicles in he westbound direction per hour, the most promising solution for improved bicycle and pedestrian access is to repurpose the right
turn lanes. The project team developed three alternatives.
athway
This alternative does not change any of the configuration in the eastbound direction. The westbound right turn lane is converted to a wo-way cycle track that would tie into the Bronx River Pathway; the sidewalk width is reduced

Figure 2. Popham Road over Metro-North Railroad | Looking West | Alternative 1

Figure 3. Popham Road over Metro-North Railroad | Looking West | Alternative 2

to eight feet to accommodate a planted buffer. his alternative would allow users of the Bronx River Pathway to access the village Center more
seamlessly. The protected bike infrastructure is seamlessly. The protected bike infrastructure is
designed to make biking comfortable and safe for all cyclists, regardless of age or ability. Moreover, cyclists commuting to the train station from neighborhoods to the east could use this path access bike parking on the west side of the station, which is underutilized.

Alternative 2: Eliminate Raised Median Alternative 2 further modifies the roadway. In addition to converting the westbound right turn ane into a cycle track, this alternative eliminates the raised median in favor of a wider planting strip and cycle track. Although center medians an have safety benefits by preventing headn collisions, siting them in roadways with 30 mph speed limits is more of an aesthetic choice. Relocating the planter strip to the sidewal of comfort to the cycle track and sidewalk. The space may even be wide enough or restaurants to offer café seating on Pophan Road.
Alternative 3: Widen Raised Median For Alternative 3 , the median is widened eedback about the existing median is that it is lantings

Figure 4. Popham Road over Metro-North Railroad | Looking West | Alternative 3

Ore like a boulevard. Gateway features could also be added This alternative does not include a cycle tack, so cyclists would either need to share the 8 -foot sidewalk with pedestrians or ride in the lane track, so cyclists
with vehicles.

Alternative Selection

Following the presentation of alternatives at the virtual public meeting, members of the public emphasized a strong need for improved bicycle and pedestrian access to the Village Center. For
this reason, Alternative 3 was eliminated for its lack of protected bike infrastructure The difference this reason, Aternative 3 was eliminated for its lack of protected bike infrastructure. The difference
between Alternative 1 and Alternative 2 is more of an aesthetic choice: offer the plantings in the center berween Aternative 1 and Aternative 2 is more of an aesthetic choice: offer the plantings in the center
or along the cycle track/sidewalk. The project team believes the bicycle and pedestrian spaces offered in Alternative 1 meet the needs of active transportation users. This alternative is preferred because of the limited impact it has on the majority of the roadway. Moreover, it will be easier to pilot through a emporary lane closure.
The concept plan on page 10 outlines the new lane configurations as well as crossing, signage, and
lane alignment recommendations.

The Vision for Popham Road

A redesigned Popham Road will be safer for all users. This includes alike. The plan will enhance inadequate pedestrian connections with safer, more convenient crosswalks. The plan will establish new connections for bicyclists and other wheeled users between the Bronx River Pathway and the Village Center. The plan will make driving on Popham Road less stressfu by establishing clearer travel patterns along the roadway, while reducing he number of potential conflicts between all users. The plan accomplishes hese goals with the forlowing components.
A new cycle track provides a direct off-street bicycle connection between the vilage Center to the Bronx River Pathway. The cycle track eliminates ramp on the sidewalk to the north of the bridge.
Shorter and improved crosswalks are made possible with bumpouts a edestrian refuge island at Depot Place, and an intersection realignment pedestrian refuge island at Depot Place, and an intersection realignmen
at Chase Road. Signalization will be improved to include leading at Chase Road. signalization will be improved to include leading prohibited when pedestrians are crossing East Parkway or Scarsdale Avenue.
New gateway signage at East Parkway in an expanded sidewalk area will serve as a gateway to the village. This gateway location can also offer bike parking and informational signage for pathway users looking to explore he village
Channelization of through-traffic with mountable and landscaped media lands and bumpouts prevents the need for stressful lane changes through the study area.
Eliminating the lightly-used westbound right-turn lane will allow travel nes to be widened between East Parkway and Chase Road. Eastbound narrow.
Eliminating the westbound right-turn lane approaching Depot Place will fovide room for the cycletrack. Drivers today use the right-turn lane to bypass properly queue traffic at Depot Place.

A Quick Look
What is a Cycle Track?
Aclete rack is an exclusive bike faciirty that allows people to ride
along a roadway completely separated from traffic. A cycle track provides a similar experience for bicyclists as a shared-use path or a
rail trail and can be used by the most fearless or most timid of biycle iders. Cycle tracks can be at street level or sidewalk level, but must eature vertical protection such as curbing, parked vehicles, or othe
vertical elements such as planters and flex posts Below is a cycle track that was built along Delaw Philadelphia. Athough this stretches for a much longer distance it serves a very similar purpose. Delaware Avenue is a high-volume street with lots of fast-moving traffic. A bike lane in the street would not an experienced urban rider. The Delaware Avenue cycle

Connecting the village to the Bronx River Pathway is an important recommendation for the new vision for Popham Road. By repurposing underutilized and misused turning lane, the Popham Road bridge over Metro-North will feature a new connection that will enhance safety, increas economic development potential with ts
The Bronx River Pathway is a 13 -mile pathway extending from Valhalla to The Bronx River Pathway is a 13 -mile pathway extending from Valhalla provides a direct connection to the Bronx River Greenway which extends an additional 8-miles through New York City. The Bronx River Pathway is one of two important off-road multi-use pathways in lower Westchester County providing critical north-south connections between Westchester County and ew York City
With the Village Center situated directly off the Bronx River Pathway, there s untapped potential to turn Scarsdale into a bike tourism hub for the tray system. The proposed improvement to bicycle facilities should be paired This would allow trail users to navigate directly to the village Center and potentially eliminate the need for some visitors to drive.
Not only would the cycle track connect to the Bronx River Pathway it would provide cyclists access to the west side of the Metro-North station as space on this side of the station is generally more available than the east side, and there exists potential to provide secure bicycle parking at this cation. This would serve as a critical asset for Metro-North users who may wish to bicycle to the train but without the worry of biycle theft during especially for e-bike users who may be reluctant to lock their bike to an open bike rack.

gure 5. Proposed Pathway Connection

gure 6. Proposed Welcome Signage Example Conce
The proposed welcome sign example concepet depicted here is only ilustrative of propossed
elements and not final desigin It is proposed that this signogei includes of welcome signoge

Irit

Garth Road is among the most dificicult
crossings for pedestrin Crossings for pedestrians. Installing a wider
media island to include a pedestrian refuge
will reducce the median island to include a pedestrian reer
will reduce the maximum unprotected
crossing distance from 65 feet to 25 feet.
Pedestrian Refuge Island

Current phasing of the left-turns at this
intersection includes a confusing "yellow intersection incudes a confusing yellow the introduction of a fully protected left-turn
phase for Popham Roud. See Page 13 for phase for Popham Road. See Page 13 for
further information
Protected Left-Turn Phase

Eastbound drivers frequently occupy bo
lanes in this location due to narrow lane widths. With the removal of the westbound right turn lane, theses lanes can be slightly
widened to encuurage vehicles to stay in a widened to e.
single lane.

Crosswalks at three locations are
In response to proposed
placemaking changes for the Village Center, Chase Road has several different alternatives eac
with its own benefits. See page
recommendeded to e e striped wider. This
recommended to be striped wider. This
enhances visibility to motrorists and provides a
more direct crosssing route for pedestrians. The more direct crossing route for pedestrians. The
wider crosswalks also increase the visibility of wider crossing for turning vehicles, which may ho crossing for turring vehic ess, which may
noe current crosswalks until after a turn is

Change layouts on East Parkway to provide safer turning movements
to East Parkway. See additional discussion on page 13.

Appropriate Lane Widths

Bumpouts

Bumpouts are proposed at all feasible locations in the study area fer Popham

 locations in the study area for PophRoad. Bumpouts hardscape aready Road. Bumpouts hardscape already
prohibited no-parking zones and reduce pedestrian crosssing distances. This bumpout reduces the crossing distan

Making It Work

This section provides more detail on the safety infrastructure identified

Popham Road Cycle Track

According to drone data, 24 vehicles per PM peak hour use the westbound right-turn from Popham Road to Depot Place. Approximately ten vehicles
per hour use this lane to bypass westbound through traffic queued for the signal at Popham Road and Depot Place by proceeding straight from the right-turn lane despite clear lane markings.
The plan recommends removing the westbound right-turn lane from Popham Road to Depot Place. A planning-level traffic analysis conducted in Synchro showed minimal impacts to traffic operations at this intersection. This space is repurposed with an 8 -foot cycle track (with 2 -foot buffer from he curb), seamlessly creating a safe off-road bicycle connection between the Village Center and the Bronx River Pathway. This cycle track provides an off-road connection for more cautious cyclists by providing an alternative to existing staircase and a tight ramp on the northern sidewall.
Bronx River Pathway wayfinding signage is recommended at the intersectio of Popham Road and East Parkway. Furthermore, the existing pathway River Pathway should be upgraded to a minimum of 10 -feet in width to accommodate bicycle traffic.

Mountable Surfaces

This plan recommends mountable treatments in five locations. Four of these bcations are in a center median, while a fifth is provided at a bumpout t the intersection of Popham Road and Garth Road. These mountable surfaces will facilitate large vehicle turning movements at intersections and can easily be traversed when needed. Mountable surfaces sho
rough surface to discourage smaller vehicles from traversing. Mountable surfaces can be of varying design. A Belgian block material may be desirable to match the aesthetic of other elements in the Village Center

Leading Pedestrian Intervals LPIs)
A leading pedestrian interval (LPI) is an advance $3-7$ second period where pedestrians cross prior
to vehicles given a green light It is recommended that a 5 -second LPI be introduced at all three signalized intersections in the village Center with the LPI activated by default. LPIs are a Proven Safety Countermeasure identified by the Federal Highway Administration (FHWA) and are ssociaced with a 3% reduction in pedestrian-

Asignal with an LPP/shows a walk indication prior to green
ight Source: Federal Highway Administration)

Protected Left-Turn Phase at Popham Road and East Parkway

The plan recommends changes to the exist
signal phasing at this intersection as an signal phasing at this intersection as an phasing introduces a "Yellow Trap" condition which is confusing to drivers and prohibited except under rare circumstances by the Manua on Uniform Traffic Control Devices (MUTCD), the FHWA standards used by transportation engineers nationwide on all public streets. The
Yellow Trap condition occurs at this intersection due to the westbound left-turn arrow to due to the westbound left-turn arrow to
Scarsdale Avenue being served following the Popham Road through movements. Eastbound left-turning traffic from Popham Road to East Parkway are permitted to turn left with through traffic, and upon seeing indication of a yellow
signal may be inclined to complete their turn in signal may be inclined to complete their turn in
front of oncoming traffic, which they may assume hast of oncolow indication as well. This assumption is incorrect and can lead to serious safety concern for which the project team observed via drone analysis and received public comment.
To eliminate the Yellow Trap condition, this plan proposes to fully protect the leff-turn phases on Popham Road. This change would prohibit leff-turns in the Popham Road through phase
and would instead show these left-turns with a red left-arrow during this period. A change to a felly protected left-turn could increase queuing length, which is mitigated in this plan with a longer left-turn lane as shown. It is recommend
that the left-turns be served in the same order as the existing case, with the eastbound left-tur
figure 11. A red left-turn arrow prohibits left-

preceding the throus

East Parkway Changes

The block of East Parkway northbound just north of Popham Road is an area of concern due to the conflict between turning vehicles entering East Parkway and vehicles pulling out from angled parking. Currently, parked vehicles closest to the from three different directions. Vehicles turning onto East Parkway must yield to on-coming traft and crossing pedestrians and then contend with vehicles parking on this block. Frequently, turnin vehicles were observed in the drone data queuin back out of parking spaces.
The recommendations included in this report present several options to improve the existing condition. In all options, sightlines between Popham Road and East Parkway parking should
be evaluated. This includes potential sightline obstructions due to low-laying thick brush on the East Parkway median south of the on-street
parking. Furthermore, all options include raising an existing no-parking area art ine northeast corner of this intersection to sidewalk level. The other options are as follows

Option 1: Move loading zone south along east side of East Parkway. This option pushes the existing loading zone to the south and maintains the same number of parking spaces in this area. With fewer vehicles using the loading zone relative to the angled parking, this option would reduce the number of potential conflict points. ption 2: Move loading zone to west side of roadway and place parking along entirety of east side of roadway. This option has the advantage of in the most problematic area of parking on East Parkway. This option naintains the same number of parking spaces in this area, but requires hat two spaces be stripped just north of the loading zone.
Dption 3: Reduce the loading zone size and move the loading zone slightly to the north. Eliminate some of the parking closest to the ntersection and curb this area to create a transition area between the itersection and the parking. This option would reduce the size of the parking spaces in this area.
Option 3 is recommended. The MUTCD discourages parking within 20 feet of crosswalks, and some states prohibit parking within 25 feet of crosswalk. This is due to the visibility challenges and potential conflict points that comments received about safety at this intersection, an intersection with earer sightlines and fewer conflict points is a higher priority than the existing parking configuration

Figure 12,
Parkway.

The intersection of Popham Road and Chase Road has been the focus of many studies dating
back to at least 1995 . Safety of pedestrians ack to at least 1995. Safety of pedestrians Prior work as well as the public comments eceived as part of this plan have identified the east crossing of Popham Road as a key concer Drivers fail to yield from westbound right-turn affic to Chase Road and left-turning traffic fro hase Road.
he recommendations include a realignment of the Chase Road approach and a reallocatio of lane assignments for the Popham Road Chase Road approach is recommended to shorten the crossing distance across Chase Road and to "--up" this approach with the intersection. he realignment of Chase Road would requir hat "split" phasing be introduced at this intersection, first serving northbound traffic from Irom Chase Road. This change would impact from Chase Road. This change would impact result in limited increases in travel time along popham Road as discussed in further detail in he following sections. A pedestrian phase to coss Popham Road could be phased to cross Overhill Road so that pedestrians would not cross Popham Road with a busier Chase Road phase
The proposed realignment of this intersection fom an existing 85 feet to approximately 65
fee. This reducea crosswakk length increases the crosswalk on the east side of the intersection is proposed to be relocated closer to the intersection to the west. While this marginally increases crosswalk length, relocating this crosswalk increases visibility to the northbound

.

Adaitional changes at this intersection include a eailocation of the westbound approach lanes. An exclusive right-turn lane is replaced with
exclusive left-trel exclusive left-turn lane for this approach. Planning-level traffic analysis conducted in furthe
sections show acceptable operation for these sections show acceptable operation for these

Harwood Court and Chase Road

Members of the public identified the intersection

bar keeps the approach to Popham Road clear so that Harwood Court traffic can queue at that
signal. An example of a similar treatment can be found at the intersection of Midland Avenue an
Palumbo Place in Bronville NY (Figure 14) Ahird optio ind A third option introduces a mini-roundabout
with mountable materials at this intersection with mountable materials at this intersection.
The mini-roundabout would feature a stop sigh on the Harwood Court approach, and a yield on the Chase Road northbound approach. The mini-roundabout makes it easier for left-turning vehicles from Harwood Court by giving these
vehicles right-of-way over traffic from Chase vehicles right-of-way over traffic from Chase Road. Queuing from this yielding movement is
not expected to impact the signalized intersection at Chase Road and Popham Road due to low volume of exting vehicles from Harwood Court. The mini-roundabout would have several advantages to the existing configuration and Option 1 and Option 2: 11 the mini-roundabout serves as a gateway and traffic-calming device
for northbound Chase Road traffic, and 2) the for northbound Chase Road trafic, and 2) the mini-roundabout alows passenger vehicles to Chase Road southbound to Chase Road northbound. Both elements support the placemaking vision established as part of this plan. Traffic speeds would be reduced towards the raised crosswalk between Spencer Place an Chase Park. The allowance of a U-turn would
further increase the flexibility of the placemakin further increase the flexibility of the placemaki
plan by allowing motorists to U-turn at this location when Boniface Circle is closed for even This movement makes it easier for motorists looking for parking, without being directed back looking for parking
to Popham Road.

Vehicular Detection
Vehicular detection should be considered on all side street and Popham Road left-turn
phases. This change could improve travel tim performance along Popham Road and increase efficiencies for the signal system in the Village Center. This change would also require the addition of pedestrian push buttons A planning-level traffic analysis in Synchro was conducted to understand the potential benefit detection may have on travel times on Popham
Road. With the addition of detection being the Road. With the addition of detection being the
only change, travel times on Popham Road were only change, travel times on Popham Road were
projected to improve from 62 seconds to 50 seconds in the eastbound direction and from 86 sections to 67 seconds in the westbound direction. This is an average of a 20% decrease in travel time on Popham Road due to the implementation of vehicular detection alone
Due to the improved efficiencies vehicular
detection adds to the system, vehicular detection adds to the system, vehicular
detection can help mitigate some of the operational impacts of the safety improvements recommended in the study area.

Signalization Changes at

 Popham Road and Depot PlaceSimilar to the intersection of Popham Road and East Parkway, the signal at this intersection introduces a "Yellow Trap" condition due to the sequencing of the left-turn phases for eastbound and westbound left-turn arrows from Popham Road. Currently, eastbound left-turns are served prior to the Popham Road through
his creates a confusing con hion movemens. Id is prohibited by the condition for drivers are circumstances. As the geometry of this westbound left aws for both eastbound and gether, it is refurn movements to be served be served together, in anded that these left-turn oad through movement phase The Popham he Yellow Trap condition and does not lead to

Pedestrian Safety Signage

Additional pedestrian safety signage is ecommended for all three signalized signs with variable messages indicating "No Tun on Red" during the leading pedestrian interval and "Yield to Peds" during the green interval with concurrent pedestrian crossing shall be installed on the following approaches to these intersections:

Popham Road westbound approach to the intersection with Chase Road
Overhill Road northbound approach to the intersection with Popham Road
All approaches to the intersection of Popham Road and East Parkway
Garth Road northbound approach to the intersection with Popham Road.
All other approaches shall receive a standardized "Turning Vehicles Yield to Pedestrian" sign for all ignt-turn movements. Consideration for a sp

TURNING

푸
head for the left-turn movement from Popham Road eastbound to Chase Road should also be

Close Staircase to Bronx River Pathway
The staircase on the southern side of the bridge over the Bronx River Pathway provides a cut off for pedestrians wishing to access the Bronx River Pathway from Popham Road above. While the staircase is not directly connected to the
Bronx River Pathway below, it is clearly visible for passing pedestrians. However, this staircase exits at the top without sidewalk access on the Popham Road bridge and places pedestrians
directly in the eastbound through lane on Popham Road
due to tommended that this staircase be closed Popham Razety concerns. Safe access between Popham Road and the Bronx River Pathway is to the north and with a path Bridge just 500-feet Place, proposed to be upgraded as part of this
plan.
Traffic Signal Modifications
necessary. Furthermore, the following upgrades hould be considered at some or all traffic signa cations:
Upgrading the existing 8-inch signal heads to
tandard 12-inch signal heads

- Installing backplates to traffic signals
- Installing Accessible Pedestrian Signal (APS)
equipment wi

Traffic Impacts

The recommendations included in this plan, such as the removal of turn lanes, addition of
Pls, left-turn phasing changes, and split phasing have the potential to impact traffic in the study area. Although safety is the top priority of this planning effort, impacts to traffic should be nderstood. A planning-level traffic analysis mpacts. Atraffic model for the afternoon peak period was developed based on values obtained om the 2016 traffic report and other estimated signal settings based on observations and best ractices. To ensure conservative results, the highest hourly traffic volumes between the 2016 were used.
Recommendations here are evaluated based on Recommendations here are evaluated based o o assess vehicular delay at each intersection. OS values range from A (very limited vehicle delay) to F (significant vehicular delay). Typical practice finds LOS D or better acceptable in peak hours. Second, vehicular travel time on Popham
figure 17. Level of Service (LOS), Existing v. Recommendations (PM Peak Hour)

Intersection Existing overall LOS Delay [s]	Recommendations Overall Los $/$ Delay $[$ [s]	
Popham at Depot	B $/ 13.2$	$\mathrm{~B} / 14.1$
Popham at East Parkway	$\mathrm{B} / 15.1$	$\mathrm{C} / 26.0$
Popham at Chase / Overhill	$\mathrm{B} / 15.7$	$\mathrm{C} / 24.4$

Figure 18. Popham Road Travel Time Results between Chase Road and Garth Road (PM Peak Hour)

Direction	Existing Travel Time [s]	Proposed Travel Time [s]	Difference [s]
Eastbound	61.6	61.9	+0.3
Westbound	86.0	79.5	-6.5

Road through the study area was evaluated utilizing SimTraffic, a component of Synchro. The original worksheets are included in the Appendix Figure 17 presents overall LOS results for the three intersections in the study area for the PM peak hour. While delay increases at each of the three intersections evaluated, LOS remains with respect to travel tes the With respect to travel times, the mpact on travel timestimated to have minima inpact on travel times along Popham Road (Figure 18).

Conclusions and Considerations for Implementation opportunities to

Connect the Village Center to the Bronx River athway with protected bike infrastructure and sidewalks
mprove pedestrian safety and visibility at Popham Road crosswalks through mplementing LPIs, shortening crosswalks, and including staged crossings
Eliminate the Yellow Trap that is creating unsafe leff-turn movements at two intersections
Create a safer driving environment for motorists with clear lane assignments, pavement markings
The planning-level analysis shows these recommendations are possibl without creating significant delays on Popham Road.viliage Board
Trustees expressed interest in additional data analysis, such as modeling with Vissim software
or collecting data over a longer period. These approaches may be worthine to explore before implementation, but the Village may also choose to consider a temporary lane closure instad. Closing the westbound left turn lane a Depot Place (and possibly East Parkway) would closure would impact delay. However, temporary measures without signal improvements as noted may increase vehicular delay beyond the levels oted here. Regardless of which approach to conducting more analysis, additional engineering
The recommended planning-level concept in this report is one of the most promising
opportunities to improve safety for all road users in the Village Center. Throughout this study and in previous planning processes, the community has highlighted Popham Road as barrier to accessing the Village Center. The ecommendations provide a context-sensitive solution to the access and safety concerns a critical link in the bicycle network.

Fox Meadow Road

Background
Fox Meadow Road is a residential north-south rnidor with a significant role in multimodal llage Center access. The portion closest to the age Center has a sidewalk on the west side froadway, and pedestrians and cyclists are frequently seen using the roadway itself. he Average Annual Average Daily Traffic (AAD) 15,877 (2019). When the Bronx River Parkway is used for Bicycle Sundays, Fox Meadow Road is an alternative for vehicles.
The lanes on Fox Meadow Road are 15 feet neach direction, and the GIS property data available indicates that the public right of way xtends at least seven feet beyond the existin roadway on either side of the street. Parking is
permitted on the street, and landscaping and delivery vehicles can be seen using the parking. Fox Meadow Road is often used for private venicle parking during Village Center Events.

Findings

Seeeding is common on Fox Meadow Road. With a posted speed of 30 mph , the drone vide captured speeds regularly exceeding 40 mph . Members of the public confirmed that speeds on the road are high, raising concerns of bicycle and pedestrian safety. Drivers associate wide la widths with higher-speed roadways, so the 15 foot lanes may be encouraging drivers to speed
Members of the public requested traffic calming measures such as speed bumps. Repaving has also been requested.
One of the most common comments received was the need to improve the crossing at Crane

Road. This location presents a significant challenge. Drone data indicates that pedestrians cross Crane Road at Fox Meadow Road rather This colld be the crosswalk at East Parkway This could be because the pedestrians are headed toward Chase Road or because the crossing distance does not feel far enough to
pose a safety concern. Comments from the public pose a safety concern. Comments from the pubic
as well as proiect team observations noted the potential for near misses given limited visibility and high vehicle speeds at that location. Potential solutions for this intersection are discussed in the Crane Road section starting on page 24. Drone footage recorded no pedestrians using the East Parkway crosswalk. The speeding on Crane Road and the lack of an all-way stop at East Parkway contribute the concerns about crossing at this location (discussed more in the Crane
Road section). Reports from 2015 and 2016 indicate poor sightines at this location. According
o the 2016 report, the sight distance from Fox Meadow Road was found to be only 131 compared to the 335 feet necessary

Alternatives Considered With such a wide right of way, bicycle hfrastructure is feasible on Fox Meadow Road he project team developed three alternatives,

Alternative 1: Bike Lane

his alternative uses the five feet currently used for street parking and adds a bike lane adjacen
to the curb. Additionally this alternative adds a sidewalk and planting strip on the east side of Fox Meadow Road in the public right of way. Any on-street parking in this concept would block the bike lane. Infrastructure such as this may reate a perception of safety for some cyclists, would be blocked frequently by parked vehicles.

Figure 19. Fox Meadow Road at Crane Road | Looking North | Existing Condition
\qquad

Figure 20. Fox Meadow Road at Crane Road | Looking North | Alternative

Alternative 2: Cycle Track

Alternative 2 also provides space for cyclists bu with an enhanced buffer. The cycle track would planter strip. A sidewalk and cycle track would be added on both sides of the street. A two-wa cycle track on the west side of the road was considered, but the project team did not advance his option due to the number of driveways. Alternative 2 assumes on-street parking would
not be permitted, so delivery and landscaping ot be permitted, so delivery and landscaping vehicles would need to use the driveways; for park at the Freightway site or other roads in the Village Center.

Alternative 3: Neighborhood

 Greenwayhe neighborhood greenway concept has been sed on residential streets throughout the country. Neighborhood greenways use traffic calming infrastructure to create streets with low anf and low speeds. The streets are designed alming infrastructure included on meighbortic greenways includes:

speed bumps

Chicanes
hokers
Neighborhood traffic circles
Speed feedback signage

Figure 21. Neighborhood Greenway Concept

Bike sharrows, bike icons and chevrons painted on-street, offer wayfinaing benefits for cyclists. "Bicyclists may use full lane" signage will emphasize he street is a street that prioritizes active transportation. Additionally, many neighborhood greenways paint intersections with colorful designs to comfortably use roadways, many cities prioritize paving neighborhood greenways. Traffic diversion is a common design intervention but is not recommended in this alternative due to the lack of north-south alternatives for vehicles in the area.

Recommendations

The neighborhood greenway concept (Alternative 3) is recommended or Fox Meadow Road. With appropriate traffic calming infrastructure, Fox Meadow Road could be a road that is comfortable for all road users including children. This alternative maintains the on-street parking, which is critical need during events. Now that state law permits villages to post 25 mph speed limits, it is recommended that the speed limit on Fox Meadow Road be lowered.

Conclusions and Considerations for Implementation

The wide lanes on Fox Meadow Road encourage faster vehicle speeds, same time, community members recognized the need for on-street parking space given the proximity to the village Center The neighborhooe parking space given the proximity to the vilage Center. The neighborhood greenway vehicles while keeping most of the space available for parking.
Implementing neighborhood greenways is a coordinated effort. Traffic Calming should be strategically placed to maximize the benefits As an aaming should be strategicaly placea to maximize the beneft ts. As an chokers to test locations. Outlined with flexible bollards, these would help narrow the roadway. Speeds could be monitored both before and after mplementation to determine effectiveness. Speed humps, neighborhoo affic circles, and hardscaped chicanes/chokers could be added once the best locations are determined. The outcome will be a safer street more eflective of the residential urban form

Crane Road

Background
Crane Road is a two-lane road running east-west from East Parkway to Route 22 Post Road. The lane widths are 10 feet. GIS parcel data indicates hat in some locations private properties abut right of way in these locations. There are large bankments, shrubbery, trees, and fences, way along certain segments.
There is a sidewalk that runs from Chase Road to East Parkway on the south side only; the sidewalk s elevated above the roadway. There are only two crosswalks in the Village Center section, one at East Parkway and the other at Woodland Place. he intersection at Woodland Place is a signalize intersection; the intersection at East Parkway
quires a stop for vehicles turning onto East Parkway, but drivers turning onto Crane Road from East Parkway's northbound lane are not required to stop. Near the intersection of Chas Road is a path for pedestrians accessing the Wata Viewer. the Average Annual Averase Traffic Traffic (AADT) is 7,627 (2019)

Findings
Previous studies found a number of challenges safely walking and biking on Chase Road. Repo from 2015 and 2016 recommended:

Additional crossings west of Woodland Place Reducing the speed limit to 25 mph (Previously, state law did not allow village speed limits below 30 mph , except in rare creum stances. The state law has since
mproving the sightlines for vehicles turning rom Fox Meadow Road by removing vegetation on the north side of Crane Road between Fox Meadow Road and Stonehouse Road.
Adding speed humps and stop signs
Members of the public raised safety concerns with Crane Road, many of which center around excessive speeding. The drone data documented many, if not most, vehicles speed on Crane Road. Without a stop sign between East Parkway and Woodland Place, vehicles are able to accelerate above 30 mph and maintain that speed for several block
Members of the public shared a variety of different ideas for reducing speeds. They proposed roundabouts, al-way stops, ano
additional crosswalks. Sidewalks are also requested, particularly between Chase Road and

between Fox Meadow Road and Chase Rood.
Woodland Place on the south side of the street. One participant also considered making Crane Road a one-way street to allow for sidewalk space and bicycle infrastructure
Additionally, members of the public raised a ey challenge for Crane Road: pedestrians and yclists using Fox Meadow Road need to be Village Center. The crosswalk at East Parkway is
theavily used, likely because it is not in a convenient location for many of the pedestrians heading north-south on Fox Meadow Road. Drone data captured zero pedestrians using this crosswalk; instead pedestrians were captured crossing at Fox Meadow Road, where there is no crosswalk. As noted in the Fox Meadow Road Findings (page 20), this location has limited visibility, which poses a safety concern
for a frequent pedestrian crossing location.

Alternatives Considered
. Crane Road to become a safe bicycle and pedestrian corridor, vehicle speeds must be slowed. The project team considered a variety of elements to prevent speeding: signage, all-way stops, min

Chase Road Intersection Alternatives
The two alternatives for the Chase Road intersection emerged from previous planning studies and comments from the public. Additional traffic calming is discussed in the recommendations section Alternative 1: Mini Roundabout at Chase Road
Mini roundabouts are scaled-down versions of traffic circles. They work to reduce vehicle speeds and are often less expensive to implement relative to traffic lights. They are often used in locations where venicle volumes do not justify traffic lights and can be mountable to allow larger vehicles to pass. They can be made from a variety of materials and provide a range of aesthetic options.

Apreliminary analysis shows a mini roundabout , her
Alternative 2: All-Way Stop at Chase Road n all-way stop at Chase Road could reduce the speeding that occurs between Woodland Place and East Parkway. Whereas now drivers can continue to build speed uninterrupted, this sto would ideally prevent the acceleration that is ow occurring. An all-way stop could also provid n opportunity for crosswalks, which are an

Fox Meadow Road Intersection Alternatives
he Fox Meadow Road intersection does not have nough space for a mini roundabout without Utting into the embankment so a variety of op signs and traffic calming combinations were considered.
Alternative 1: All-way Stop at East Parkway nd Speed Bumps
This alternative would require the northbound East Parkway traffic to stop before turning
onto Crane Road. Without stop signs at Fox Meadow Road, speed bumps would be installed in both directions approaching Fox Meadow Road. Signage would be installed encouraging edestrians to use the East Parkway crosswal but no crosswalk would be installed at Fox Meadow Road.

Alternative 2: Al-way Stop at Fox Meadow Road with Crosswalk
This alternative would create an all-way stop at Fox Meadow Road. A crosswalk would be installed to connect the Fox Meadow Road sidewalk to
at East Parkway would remain unchanged.
Alternative 3: All-way Stop at Fox Meadow Road with Raised Crosswalks
This alternative would offer the same all-way stop at Fox Meadow Road discussed in Alternative 2, but the crosswalks would be raised. The raised element would prevent drivers from driving fast or ignoring the all-way stop.

Recommendations

The graphic on page 28 illustrates the safety infrastructure measures recommended for Crane

Chase Road Intersection Recommendations
The project team recommends Alternative 2 , the all-way stop with crosswalks at the Chase Road
intersection. A flashing red stop sign could further emphasize the need for vehicles to stop at this ocation. The uninterrupted speeding that occurs this intersection has created an environment that makes turning from side streets difficult. Moreover, the reduced speeds could help alleviate some of the concerns pertaining to pedestrian crossings. It is viewpoints; some advocated for the mini roundabout While others pushed for the all-way stop. Members of the public felt the mini roundabout would create confusion and would be complicated by adjacent
ox Meadow Road
Recommendations
The project team recommends Alternative 3 at the Fox Meadow Road Intersection. The all-way stop paired with raised crosswalks will force drivers to slow down at what is a critical crossing for pedestrians and cycists. To further enhance the pedestrian and south side of the intersection should connect the crosswalk to the sidewalk and ultimately the East arkway parking area. kis will maximize convenience, comfort, and safety.

The visibility and speeding concerrss at the intersection of Fox Meadow Road and Crane Road could be mitigated by an all

Additional Safety Infrastructure

A sidewalk on the south side of Crane Road from Chase Road to Woodland Aace should be implemented as soon as possible extending the sidewalk
beyond this study area should also be considered. This sidewalk would provide a critical link for neighborhood residents to access the Village Center on foot rather than driving. It could also help pedestrians access the rail near the Chase Road intersection. Ideally the sidewalk would be wide enough to accommodate both cyclists and pedestrians.
Speed feedback signage located between Chase Road and East Parkway nay also help to remind drivers of the speed limit.
Conclusions and Considerations for Implementation
Through this study, Crane Road emerged as a critical east-west corridor to access the Village Center and Bronx River Parkway. Crane Road presents a significant challenge, however. The constrained right of way, topography embankments, mature trees, utilities, and fencing that exists adjacent to edestrian and bicycle infrastructure. This report assumes that the village would not pursue easements or takings, but if this were an option, wide sdewalks that could accommodate both pedestrians and cyclists are ecommended for the full length of Crane Road.

Funding

gned in November 2 21, the Infrastructure Jobs Act (III A) the new ederal infrastructure law that oversees federal nivestments in road, bridge, and mass transit ffrastructure. Many of the concepts proposed nthis report will qualify for federal funding, oadway safety for all users.
Although not all federal grants require gencies, the village of Scarsdale should work with Westchester County and the New York Metropolitan Transportation Council (NYMTC) when pursuing federal grants. Westchester County is a member of NYMTC, the metropolit planning organization that coordinates the regional vision and funding for transportation
projects. Some projects or additional studies may qualify for grants through NYMTC.
The most common and relevant federal funding sources for bicycle/pedestrian projects are listed below. A comprehensive list of all federal funding sources may be found on the Federal Highway Administration (FHWA) website.
Safe Streets and Roads for All is a discretionan grant program aimed at preventing deaths and serious injuries on roadways. Metropolitan planning organizations, counties, towns, and other subdivisions of a state may pursue these grants. Many of the recommendations of this
report are eligible including: planning, design, report are eligibe incluaing: planning, desig

[^0]roadway safety; quick-build street design hhanges informed by outreach and user input
development of a bike network; and installing development of a bike network, and instaling 2022 applications are due September 15, 2022.2
-The Surface Transportation Block Grant program is a funding opportunity for States and localities to improve the conditions on any programmed by the New York State DOT (NYSDOT) in cooperation with NYMTC. It is one of the most flexible federal funding categories se of these funds will require the support of both NYSDOT and NYMTC.

The Transportation Alternatives Set-Aside program is housed within the Surface Transportation Block Grant program and is intended for smaller scale transportation projects like bicycle and pedestrian projects. There is
funding dedicated for areas with a population between 5,000 and 49,999 , Muricipalities are encouraged to adopt and implement Complete Streets molicies/ordinances to support grant applications. Projects that make walking and biking to school safer are highlighted as an eligible activity, uggesting that the improvements recommended for Sprague Road and djacent streets may be a good candidate.
The Congestion Mitigation and Air Quality Improvement Program (CMAQ) can fund many of the same safety projects as the Transportatio Alternatives Set-Aside program funds. CMAQ is generally more focused on reducing congestion and emissions from commuting trips, and only
communities that do not meet National Ambient Air Ouality Standards ualify (all of Westchester County qualifies). To be eligible for this funding an air quality impact analysis performed by NYMTC will be required, so coordination with their modeling staff is important, particularly to be sure heir work plan includes that analysis.
Highway Safety Improvement Program (HSIP) funds may be used on Il public roads, including local roads. The funding can be used for bicycle and pedestrian safety projects and must be included in the State Highway Safety Plan. 3 This program is data-driven and focused on leducing crashes, tatalities, and injuries. It uses federal funding but is run pplications are typically due by May 1 of each year.
RAISE (Rebuilding American Infrastructure with Sustainability and Equity) discrertionary grants are intended to address projects of local regional significance that address key safety, mobility, connectivity, and sustainability goals. These funds are highly competitive, but bicycle/ pedestrian projects are often selected based on their merit.
The Center for Disease Control has historically offered small grants or programming and small-scale infrastructure projects that promote

New Work Department of Transportation. Nee York State Strategic highway Sofery Plan. hitps://Ww fotalReport.todf

physical activity. The latest program is called the State Physical Activity and Nutrition (SPAN) program. Though not offered on an annual bas these programs can provide opportunities for demonstration projects,
traffic safety campaigns, and Complete Streets workshops. The grants are administered through the New York State Department of Health.
sate funding sources like the Downtown Revitalization Initiative and Ne rk Main Street programs have helped New York communities fund streetscaping, façade improvements, and planning. Foundation or corporate region have had some success. Hartford and Jersey City were both awarded Blue Zones grants ${ }^{4}$ to help fund bicycle and pedestrian infrastructure. Amityville receive funding for a walk audit grant from AARP. Pedestrian plazas and other placemaking initiatives are typically funded locally.

U.S. Department of Transportation. Sofe Streat

Appendix A: Synchro Reports

	4	\rightarrow		\downarrow			4	4	P		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\dagger		7	\uparrow	F	\%	\dagger		${ }^{7}$	\dagger	
Traffic Volume (vph)	15	557	53	90	549	24	79	6	107	20	4	29
Future Volume (vph)	15	557	53	90	549	24	79	6	107	20	4	29
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	100		0	115		0	135		0	75		0
Storage Lanes	1		0	1		1	1		0	1		0
Taper Length (t)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Fit		0.987				0.850		0.859			0.867	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1839	0	1770	1863	1583	1770	1600	0	1770	1615	0
Flt Permitted	0.288			0.346			0.734			0.637		
Satd. Flow (perm)	536	1839	0	645	1863	1583	1367	1600	0	1187	1615	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		8				69		116			32	
Link Speed (mph)		30			30			30			30	
Link Distance (tt)		891			422			387			247	
Travel Time (s)		20.3			9.6			8.8			5.6	
Confl. Peds. (\#\#hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/rr)												
Mid-Block Trafic (\%)		0\%		\checkmark	0\%			0\%			0\%	
Adj. Flow (vph)	16	605	58	98	597	26	86	7	116	22	4	32
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	16	663	0	98	597	26	86	123	0	22	36	0
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			,			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane 100												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	0	0		0	0	0	0	0		0	0	
Detector Template												
Leading Detector (ft)	0	0		0	0	0	0	0		0	0	
Trailing Detector (tt)	0	0		0	0	0	0	0		0	0	
Turn Type	pm+pt	NA		pm+pt	NA	Perm	Perm	NA		Perm	NA	
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4			8		8	2			6		
Detector Phase	7	4		3	8		2	2		6	6	
Switch Phase												
FHI Studio											nchro 1	Report

| Lane Group | EBL | EBT | EBR | WBL | WBT | WBR | NBL | NBT | NBR | SBL | SBT |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | SBR

$$
\text { Cycle Length: } 11
$$

Actuated Cycle Length: 110
Offset: $0(0 \%)$, Referenced to phase 2:NBTL and 6:SBTL, Start of Green
Natural Cycle: 60
Maximum v/c Ratio: 0.59
Intersection Signal Delay: 13.2
$61.1 \% \quad$

Intersection LOS: B
Intersection Capacity Utilization 61.1%
ICU Level of Service B
nalysis Period (min) 15
m Volume for 95 th percentile queue is metered by upstream signal.

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow	7	\%	\uparrow	F	\%	$\hat{\beta}$		\%	\uparrow	7
Traffic Volume (vph)	160	454	70	42	500	42	40	90	50	45	70	155
Future Volume (vph)	160	454	70	42	500	42	40	90	50	45	70	155
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	115		0	0		0	100		0	0		135
Storage Lanes	1		1	1		1	1		0	1		
Taper Length (t)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt			0.850			0.850		0.947				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	1764	0	1770	1863	1583
Flt Permitted	0.193			0.451			0.586			0.660		
Satd. Flow (perm)	360	1863	1583	840	1863	1583	1092	1764	0	1229	1863	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			119			119		26				169
Link Speed (mph)		30			30			30			30	
Link Distance (t)		422			256			479			463	
Travel Time (s)		9.6			5.8			10.9			10.5	
Confl. Peds. (\#hr)												
Confl. Bikes (\#hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#hr)	0	0	0	0	0	0	0	0	0	0	0	
Parking (\#hr)												
Mid-Block Traffic (\%)		0\%		\square	0\%			0\%			0\%	
Adj. Flow (vph)	174	493	76	46	543	46	43	98	54	49	76	168
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	174	493	76	46	543	46	43	152	0	49	76	168
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Righ
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(f)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		
Number of Detectors	0	0	0	0	0	0	0	0		0	0	
Detector Template												
Leading Detector (t)	0	0	0	0	0	0	0	0		0	0	
Trailing Detector (ft)	0	0	0	0	0	0	0	0		0	0	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm
Protected Phases	7	4		3	8		5	2			6	
Permitted Phases	4		4	8		8	2			6		
Detector Phase	7	4	4	3	8	8	5	2		6	6	
Switch Phase												

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	9.0	18.0	18.0	5.0	18.0	18.0	5.0	18.0		18.0	18.0	18.0
Minimum Split (s)	14.0	23.0	23.0	10.0	23.0	23.0	10.0	23.0		23.0	23.0	23.0
Total Split (s)	14.0	57.0	57.0	14.0	57.0	57.0	10.0	39.0		29.0	29.0	29.0
Total Split (\%)	12.7\%	51.8\%	51.8\%	12.7\%	51.8\%	51.8\%	9.1\%	35.5\%		26.4\%	26.4\%	26.4\%
Maximum Green (s)	9.0	52.0	52.0	9.0	52.0	52.0	5.0	34.0		24.0	24.0	24.0
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Lead/Lag	Lead	Lead	Lead	Lag	Lag	Lag	Lead			Lag	Lag	Lag
Lead-Lag Optimize?	Yes			Yes	Yes	Yes						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Recall Mode	Max		Max	Max	Max							
Walk Time (s)		7.0	7.0		7.0	7.0		7.0		7.0	7.0	7.0
Flash Dont Walk (s)		11.0	11.0		11.0	11.0		11.0		11.0	11.0	11.0
Pedestrian Calls (\#hr)		0	0		0	0		0		0	0	
Act Effct Green (s)	52.0	52.0	52.0	52.0	52.0	52.0	34.0	34.0		24.0	24.0	24.0
Actuated g/C Ratio	0.47	0.47	0.47	0.47	0.47	0.47	0.31	0.31		0.22	0.22	0.22
v/c Ratio	0.61	0.56	0.09	0.10	0.62	0.06	0.12	0.27		0.18	0.19	0.35
Control Delay	20.0	13.8	0.4	8.0	10.5	0.2	27.9	25.1		37.2	36.5	7.6
Queue Delay	0.0	0.9	0.0	0.0	0.8	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay	20.0	14.7	0.4	8.0	11.3	0.2	27.9	25.1		37.2	36.5	7.6
LOS	C	B	A	A	B	A	C	C		D	D	
Approach Delay		14.5			10.2			25.7			20.1	
Approach LOS		B			B			C			C	
90th \%ile Green (s)	9.0	52.0	52.0	9.0	52.0	52.0	5.0	34.0		24.0	24.0	24.0
90th \%ile Term Code	MaxR	MaxR	MaxR	MaxR	MaxR	MaxR	Coord	Coord		MaxR	MaxR	MaxR
70th \%ile Green (s)	9.0	52.0	52.0	9.0	52.0	52.0	5.0	34.0		24.0	24.0	24.0
70th \%ile Term Code	MaxR	MaxR	MaxR	MaxR	MaxR	MaxR	Coord	Coord		MaxR	MaxR	MaxR
50th \%ile Green (s)	9.0	52.0	52.0	9.0	52.0	52.0	5.0	34.0		24.0	24.0	24.0
50th \%ile Term Code	MaxR	MaxR	MaxR	MaxR	MaxR	MaxR	Coord	Coord		MaxR	MaxR	MaxR
30th \%ile Green (s)	9.0	52.0	52.0	9.0	52.0	52.0	5.0	34.0		24.0	24.0	24.0
30th \%ile Term Code	MaxR	MaxR	MaxR	MaxR	MaxR	MaxR	Coord	Coord		MaxR	MaxR	MaxR
10th \%ile Green (s)	9.0	52.0	52.0	9.0	52.0	52.0	5.0	34.0		24.0	24.0	24.0
10th \%ile Term Code	MaxR	MaxR	MaxR	MaxR	MaxR	MaxR	Coord	Coord		MaxR	MaxR	MaxR
Stops (vph)	59	246	1	8	109	0	29	86		36	56	20
Fuel Used(gal)	2	4	0	0	3	0	1	2		1	1	
CO Emissions (g/hr)	105	288	17	14	186	6	38	120		49	76	64
NOx Emissions (g/hr)	20	56	3	3	36	1	7	23		10	15	12
VOC Emissions (g/hr)	24	67	4	3	43	1	9	28		11	18	15
Dilemma Vehicles (\#)	0	0	0	0	0	0	0	0		0	0	
Queue Length 50th (tt)	29	125	1	6	68	0	21	66		28	44	
Queue Length 95th (tt)	64	223	m0	m11	100	m0	49	120		63	85	54
Internal Link Dist (ft)		342			176			399			383	
Turn Bay Length (ft)	115						100					135
Base Capacity (vph)	285	880	811	473	880	811	368	563		268	406	477

Scarsdale Mobility Plan

	4	\rightarrow		\dagger			4	1	P		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\dagger			\uparrow	「	\%	$\hat{}$			\uparrow	F
Traffic Volume (vph)	107	430	14	20	481	84	33	21	20	102	20	70
Future Volume (vph)	107	430	14	20	481	84	33	21	20	102	20	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (tt)	0		0	0		300	100		0	0		70
Storage Lanes	1		0	0		1	1		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00	0.94	0.98	0.98			0.98	0.96
Fit		0.995				0.850		0.927				0.850
Flt Protected	0.950				0.998		0.950				0.960	
Satd. Flow (prot)	1770	1849	0	0	1859	1583	1770	1687	0	0	1788	1583
Flt Permitted	0.264				0.972		0.646				0.730	
Satd. Flow (perm)	492	1849	0	0	1808	1481	1180	1687	0	0	1330	1527
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		3				91		22				76
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		256			1260			384			384	
Travel Time (s)		5.8			28.6			8.7			8.7	
Confl. Peds. (\#hr)	15		20	20		15	13		9	9		13
Confl. Bikes (\#hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#hr)												
Mid-Block Traffic (\%)		0\%		\square	0\%			0\%			0\%	
Adj. Flow (vph)	116	467	15	22	523	91	36	23	22	111	22	76
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	116	482	0	0	545	91	36	45	0	0	133	76
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	0	0		1	0	0	0	0		1	0	0
Detector Template				Left						Left		
Leading Detector (ft)	0	0		20	0	0	0	0		20	0	0
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	0
Turn Type	pm+pt	NA		Perm	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases	7	,			8			2			6	
Permitted Phases	4			8		8	2			6		6
Detector Phase	7	4		8	8	8	2	2		6	6	6
Switch Phase												

	4							\dagger	p		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	18.0		18.0	18.0	18.0	18.0	18.0		18.0	18.0	18.0
Minimum Split (s)	10.0	23.0		23.0	23.0	23.0	23.0	23.0		23.0	23.0	23.0
Total Split (s)	15.0	73.0		58.0	58.0	58.0	37.0	37.0		37.0	37.0	37.0
Total Split (\%)	13.6\%	66.4\%		52.7\%	52.7\%	52.7\%	33.6\%	33.6\%		33.6\%	33.6\%	33.6\%
Maximum Green (s)	10.0	68.0		53.0	53.0	53.0	32.0	32.0		32.0	32.0	32.0
Yellow Time (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0			0.0	0.0	0.0	0.0			0.0	0.0
Total Lost Time (s)	5.0	5.0			5.0	5.0	5.0	5.0			5.0	5.0
Lead/Lag	Lead			Lag	Lag	Lag						
Lead-Lag Optimize?	Yes			Yes	Yes	Yes						
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Minimum Gap (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Recall Mode	Max	Max		Max	Max	Max	Max	Max		Max	Max	Max
Walk Time (s)		7.0		7.0	7.0	7.0	7.0	7.0		7.0	7.0	7.0
Flash Dont Walk (s)		11.0		11.0	11.0	11.0	11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (\#hr)		0		0	0	0	0	0		0	0	0
Act Effct Green (s)	68.0	68.0			53.0	53.0	32.0	32.0			32.0	32.0
Actuated g/C Ratio	0.62	0.62			0.48	0.48	0.29	0.29			0.29	0.29
v / C Ratio	0.28	0.42			0.63	0.12	0.10	0.09			0.34	0.15
Control Delay	4.8	4.5			25.1	3.7	29.7	17.9			33.9	7.4
Queue Delay	0.0	0.4			0.0	0.0	0.0	0.0			0.0	0.0
Total Delay	4.8	4.9			25.1	3.7	29.7	17.9			33.9	7.4
LOS	A	A			C	A	C	B			C	A
Approach Delay		4.9			22.1			23.2			24.3	
Approach LOS		A			C			C			C	
90th \%ile Green (s)	10.0	68.0		53.0	53.0	53.0	32.0	32.0		32.0	32.0	32.0
90th \%ile Term Code	MaxR	MaxR		MaxR	MaxR	MaxR	Coord	Coord		Coord	Coord	Coord
70th \%ile Green (s)	10.0	68.0		53.0	53.0	53.0	32.0	32.0		32.0	32.0	32.0
70th \%ile Term Code	MaxR	MaxR		MaxR	MaxR	MaxR	Coord	Coord		Coord	Coord	Coord
50th \%ile Green (s)	10.0	68.0		53.0	53.0	53.0	32.0	32.0		32.0	32.0	32.0
50th \%ile Term Code	MaxR	MaxR		MaxR	MaxR	MaxR	Coord	Coord		Coord	Coord	Coord
30th \%ile Green (s)	10.0	68.0		53.0	53.0	53.0	32.0	32.0		32.0	32.0	32.0
30th \%ile Term Code	MaxR	MaxR		MaxR	MaxR	MaxR	Coord	Coord		Coord	Coord	Coord
10th \%ile Green (s)	10.0	68.0		53.0	53.0	53.0	32.0	32.0		32.0	32.0	32.0
10th \%ile Term Code	MaxR	MaxR		MaxR	MaxR	MaxR	Coord	Coord		Coord	Coord	Coord
Stops (vph)	18	67			364	9	25	17			94	12
Fuel Used(gal)	0	2			9	1	0	0			2	0
CO Emissions (g/hr)	29	116			664	66	31	26			121	27
NOx Emissions (g/hr)	6	23			129	13	6	5			23	5
VOC Emissions (g/hr)	7	27			154	15	7	6			28	6
Dilemma Vehicles (\#)	0	0			0	0	0	0			0	0
Queue Length 50th (tt)	14	57			276	0	19	12			74	0
Queue Length 95th (tt)	24	77			395	27	45	39			130	35
Internal Link Dist (t)		176			1180			304			304	
Turn Bay Length (ft)						300	100					70
Base Capacity (vph)	420	1144			871	760	343	506			386	498

Scarsdale Mobility Plan

Arterial Level of Service

Arterial Level of Service: EB Popham Road

Cross Street	Node	Delay (s/veh)	Travel time (s)	Dist (mi)	Arterial Speed
Garth Road	2	14.3	34.4	0.2	18
Scarsdale Ave	3	10.6	20.1	0.1	14
Overhill Road	8	1.4	7.2	0.0	24
Total		26.3	61.6	0.3	18
Arterial Level of Service: WB Popham Road					
Cross Street	Node	Delay (s/veh)	$\begin{aligned} & \text { Travel } \\ & \text { time (s) } \end{aligned}$	$\begin{aligned} & \text { Dist } \\ & \text { lmil } \end{aligned}$	Arterial Speed
Chase Road	8	28.8	56.7	0.2	15
E Parkway	3	7.7	13.8	0.0	13
Depot Place	2	6.5	15.4	0.1	19
Total		43.0	86.0	0.4	15

2: Garth Road/Depot Place \& Popham Road PM Peak Hour

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Minimum Split (s)	10.0	23.0		10.0	23.0	23.0	23.0	23.0		23.0	23.0	
Total Split (s)	10.0	72.0		10.0	72.0	72.0	28.0	28.0		28.0	28.0	
Total Split (\%)	9.1\%	65.5\%		9.1\%	65.5\%	65.5\%	25.5\%	25.5\%		25.5\%	25.5\%	
Maximum Green (s)	5.0	67.0		5.0	67.0	67.0	23.0	23.0		23.0	23.0	
Yellow Time (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0		5.0	5.0	
Lead/Lag	Lead	Lead		Lag	Lag	Lag						
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	Yes						
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	
Recall Mode	None	C-Max		None	C-Max	C-Max	None	None		None	None	
Walk Time (s)		7.0			7.0	7.0	7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		11.0			11.0	11.0	11.0	11.0		11.0	11.0	
Pedestrian Calls (\#hr)		0			.	0	0	0		0	0	
Act Effct Green (s)	77.8	77.8		83.3	83.3	83.3	12.2	12.2		12.2	12.2	
Actuated g/C Ratio	0.71	0.71		0.76	0.76	0.76	0.11	0.11		0.11	0.11	
v / C Ratio	0.03	0.51		0.17	0.42	0.02	0.57	0.44		0.19	0.17	
Control Delay	5.9	9.5		4.5	4.6	0.1	60.0	14.1		46.2	17.9	
Queue Delay	0.0	0.0		0.0	0.3	0.0	0.0	0.0		0.0	0.0	
Total Delay	5.9	9.5		4.5	4.9	0.1	60.0	14.1		46.2	17.9	
LOS	A	A		A	A	A	E	B		D	B	
Approach Delay		9.5			4.6			33.0			28.6	
Approach LOS		A			A			C			C	
90th \%ile Green (s)	6.4	72.4		5.0	71.0	71.0	17.6	17.6		17.6	17.6	
90th \%ile Term Code	Gap	Coord		Max	Coord	Coord	Gap	Gap		Hold	Hold	
70th \%ile Green (s)	6.0	75.6		5.0	74.6	74.6	14.4	14.4		14.4	14.4	
70th \%ile Term Code	Gap	Coord		Max	Coord	Coord	Gap	Gap		Hold	Hold	
50th \%ile Green (s)	0.0	77.8		5.0	87.8	87.8	12.2	12.2		12.2	12.2	
50th \%ile Term Code	Skip	Coord		Max	Coord	Coord	Gap	Gap		Hold	Hold	
30th \%ile Green (s)	0.0	80.0		5.0	90.0	90.0	10.0	10.0		10.0	10.0	
30th \%ile Term Code	Skip	Coord		Max	Coord	Coord	Gap	Gap		Hold	Hold	
10th \%ile Green (s)	0.0	83.1		5.0	93.1	93.1	6.9	6.9		6.9	6.9	
10th \%ile Term Code	Skip	Coord		Max	Coord	Coord	Gap	Gap		Hold	Hold	
Stops (vph)	6	270		17	105	0	73	22		19	12	
Fuel Used(gal)	0	7		0	3	0	2	1		0	0	
CO Emissions (g/hr)	11	483		33	202	6	112	55		23	17	
NOX Emissions (g/hr)	2	94		6	39	1	22	11		5	3	
VOC Emissions (g/hr)	3	112		8	47	1	26	13		5	4	
Dilemma Vehicles (\#)	0	0		0	0	0	0	0		0	0	
Queue Length 50th (t)	3	186		10	68	0	59	5		14	3	
Queue Length 95th (ft)	11	318		30	142	m0	106	56		38	32	
Internal Link Dist (ft)		811			342			307			167	
Turn Bay Length (ft)	100			115			135			75		
Base Capacity (vph)	518	1302		567	1410	1215	285	426		217	362	

	$\stackrel{ }{*}$							4			\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow	7	\%	\uparrow	F	\%	$\stackrel{1}{ }$		\%	\uparrow	7
Traffic Volume (vph)	160	454	70	42	500	42	40	90	50	45	70	155
Future Volume (vph)	160	454	70	42	500	42	40	90	50	45	70	155
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	115		0	0		0	100		0	0		135
Storage Lanes	1		1	1		1	1		0	1		
Taper Length (t)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt			0.850			0.850		0.947				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1863	1583	1770	1764	0	1770	1863	1583
Flt Permitted	0.255			0.483			0.554			0.660		
Satd. Flow (perm)	475	1863	1583	900	1863	1583	1032	1764	0	1229	1863	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			119			119		26				169
Link Speed (mph)		30			30			30			30	
Link Distance (t)		422			256			479			463	
Travel Time (s)		9.6			5.8			10.9			10.5	
Confl. Peds. (\#/hr)												
Confl. Bikes (\#hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/r)	0	0	0	0	0	0	0	0	0	0	0	
Parking (\#/hr)												
Mid-Block Traffic (\%)		0\%			0\%			0\%			0\%	
Adj. Flow (vph)	174	493	76	46	543	46	43	98	54	49	76	168
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	174	493	76	46	543	46	43	152	0	49	76	168
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		
Number of Detectors	1	0	0	1	0	0	1	1		1	1	
Detector Template												
Leading Detector (t)	40	0	0	40	0	0	40	40		40	40	40
Trailing Detector (ft)	0	0	0	0	0	0	0	0		0	0	
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	pm+pt	NA		Perm	NA	Perm
Protected Phases	7	4		3	8		5	2			6	
Permitted Phases	4		4	8		8	2			6		
Detector Phase	7	4	4	3	8	8	5	2		6	6	
Switch Phase												

	\rangle			\dagger			4	\uparrow	p		\dagger	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	9.0	18.0	18.0	5.0	18.0	18.0	5.0	18.0		18.0	18.0	18.0
Minimum Split (s)	14.0	23.0	23.0	10.0	23.0	23.0	10.0	23.0		23.0	23.0	23.0
Total Split (s)	14.0	57.0	57.0	14.0	57.0	57.0	10.0	39.0		29.0	29.0	29.0
Total Split (\%)	12.7\%	51.8\%	51.8\%	12.7\%	51.8\%	51.8\%	9.1\%	35.5\%		26.4\%	26.4\%	26.4\%
Maximum Green (s)	9.0	52.0	52.0	9.0	52.0	52.0	5.0	34.0		24.0	24.0	24.0
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		5.0	5.0	5.0
Lead/Lag	Lead	Lead	Lead	Lag	Lag	Lag	Lead			Lag	Lag	Lag
Lead-Lag Optimize?	Yes			Yes	Yes	Yes						
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Recall Mode	None	C-Max	C-Max	None	C-Max	C-Max	None	None		None	None	None
Walk Time (s)		7.0	7.0		7.0	7.0		7.0		7.0	7.0	7.0
Flash Dont Walk (s)		11.0	11.0		11.0	11.0		11.0		11.0	11.0	11.0
Pedestrian Calls (\#hr)		0	0		0	0		0		0	0	0
Act Effct Green (s)	64.8	64.8	64.8	59.7	59.7	59.7	24.0	24.0		18.0	18.0	18.0
Actuated g/C Ratio	0.59	0.59	0.59	0.54	0.54	0.54	0.22	0.22		0.16	0.16	0.16
v / C Ratio	0.42	0.45	0.08	0.08	0.54	0.05	0.17	0.38		0.24	0.25	0.42
Control Delay	10.2	10.3	0.4	8.3	12.7	0.3	34.0	31.9		43.8	42.6	9.6
Queue Delay	0.0	0.3	0.0	0.0	0.4	0.0	0.0	0.0		0.0	0.0	0.0
Total Delay	10.2	10.7	0.4	8.3	13.1	0.3	34.0	31.9		43.8	42.6	9.6
LOS	B	B	A	A	B	A	C	C		D	D	A
Approach Delay		9.5			11.9			32.3			23.9	
Approach LOS		A			B			C			C	
90th \%ile Green (s)	14.9	58.0	58.0	9.0	52.1	52.1	5.0	28.0		18.0	18.0	18.0
90th \%ile Term Code	Gap	Coord	Coord	Hold	Coord	Coord	Max	Hold		Min	Min	Min
70th \%ile Green (s)	12.6	58.0	58.0	9.0	54.4	54.4	5.0	28.0		18.0	18.0	18.0
70th \%ile Term Code	Gap	Coord	Coord	Hold	Coord	Coord	Max	Hold		Min	Min	Min
50th \%ile Green (s)	11.1	58.0	58.0	9.0	55.9	55.9	5.0	28.0		18.0	18.0	18.0
50th \%ile Term Code	Gap	Coord	Coord	Hold	Coord	Coord	Max	Hold		Min	Min	Min
30th \%ile Green (s)	9.0	68.0	68.0	9.0	68.0	68.0	0.0	18.0		18.0	18.0	18.0
30th \%ile Term Code	Min	Coord	Coord	Hold	Coord	Coord	Skip	Min		Min	Min	Min
10th \%ile Green (s)	9.0	82.0	82.0	0.0	68.0	68.0	0.0	18.0		18.0	18.0	18.0
10th \%ile Term Code	Min	Coord	Coord	Skip	Coord	Coord	Skip	Min		Min	Min	Min
Stops (vph)	46	221	2	12	284	1	31	95		39	60	21
Fuel Used(gal)	,	,	0	0	4	0	1	2			1	1
CO Emissions (g/hr)	78	257	17	15	270		42	137		54	83	68
NOx Emissions (g/hr)	15	50	3	3	53	1	8	27		11	16	13
VOC Emissions (g/hr)	18	59	4	4	63	,	10	32		13	19	16
Dilemma Vehicles (\#)	0	0	0	0	0	0	0	0		0	0	0
Queue Length 50th (tt)	37	216	0	8	269	1	23	72		31	47	0
Queue Length 95th (t)	49	202	1	m14	386	m0	53	130		68	92	58
Internal Link Dist (ft)		342			176			399			383	
Turn Bay Length (ft)	115						100					135
Base Capacity (vph)	413	1097	981	559	1010	913	258	563		268	406	477
FHI Studio											chro	eport

$\begin{aligned} & \text { Scarso } \\ & \text { 3: Sca } \end{aligned}$	Mobility dale Ave	Parkw		pham	Road							$+ \text { Det }$ PM Pe	
								4	\uparrow	p	$*$	\downarrow	\checkmark
Lane Grow		EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Starvation	p Reductn	0	203	0	0	149	0	0	0		0	0	0
Spillback	Reductn	0	0	0	0	0	0	0	0		0	0	0
Storage	Reductn	0	0	0	0	0	0	0	0		0	0	0
Reduced	Ratio	0.42	0.55	0.08	0.08	0.63	0.05	0.17	0.27		0.18	0.19	0.35
Intersectio	Summary												
Area Type													
Cycle Len	: 110												
Actuated	cle Length:												
Offset: 91	(3\%), Refere	phase	EBTL	d 8:W	, Start	f Yellow							
Natural C	: 75												
Control Ty	Actuated-C	nated											
Maximum	Ratio: 0.54												
Intersectio	Signal Delay:					ersectio	LOS:						
Intersectio	Capacity Util	81.8\%				Leve	Servic						
Analysis	iod (min) 15												
m Volum	for 95th per	queue is	metere	by ups	m sign								
Splits and	hases: 3:	dale Ave	Parkw	\& Pop	m Roa								
$4{ }_{62}$				\rightarrow	R)						\square	\checkmark ¢3	
s				57 s								4 s	
405	**			7		4							
10 s	29 s		I	14 s		57 s							

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	\uparrow			\uparrow	7	\%	$\hat{}$			\uparrow	F
Traffic Volume (vph)	107	430	14	20	481	84	33	21	20	102	20	70
Future Volume (vph)	107	430	14	20	481	84	33	21	20	102	20	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	0		0	0		300	100		0	0		70
Storage Lanes	1		0	0		1	1		0	0		
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00	0.94	0.98	0.98			0.98	0.96
Frt		0.995				0.850		0.927				0.850
Flt Protected	0.950				0.998		0.950				0.960	
Satd. Flow (prot)	1770	1849	0	0	1859	1583	1770	1687	0	0	1788	1583
Flt Permitted	0.346				0.973		0.594				0.730	
Satd. Flow (perm)	645	1849	0	0	1810	1481	1085	1687	0	0	1330	1527
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		3				91		22				
Link Speed (mph)		30			30			30			30	
Link Distance (t)		256			1260			384			384	
Travel Time (s)		5.8			28.6			8.7			8.7	
Confl. Peds. (\#hr)	15		20	20		15	13		9	9		13
Confl. Bikes (\#hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#hr)	0	0	0	0	0	0	0	0	0	0	0	
Parking (\#/hr)												
Mid-Block Traffic (\%)		0\%		-	0\%			0\%			0\%	
Adj. Flow (vph)	116	467	15	22	523	91	36	23	22	111	22	76
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	116	482	0	0	545	91	36	45	0	0	133	76
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Righ
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		
Number of Detectors	1	0		1	0	0	1	1		1	1	
Detector Template				Left						Left		
Leading Detector (ft)	40	0		20	0	0	40	40		20	40	40
Trailing Detector (ft)	0	0		0	0	0	0	0		0	0	
Turn Type	pm+pt	NA		Perm	NA	Perm	Perm	NA		Perm	NA	Perm
Protected Phases	7	4			8			2			6	
Permitted Phases	4			8		8	2			6		
Detector Phase	7	4		8	8	8	2	2		6	6	
Switch Phase												

	\rangle						4	\dagger	p		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	18.0		18.0	18.0	18.0	18.0	18.0		18.0	18.0	18.0
Minimum Split (s)	10.0	23.0		23.0	23.0	23.0	23.0	23.0		23.0	23.0	23.0
Total Split (s)	15.0	73.0		58.0	58.0	58.0	37.0	37.0		37.0	37.0	37.0
Total Split (\%)	13.6\%	66.4\%		52.7\%	52.7\%	52.7\%	33.6\%	33.6\%		33.6\%	33.6\%	33.6\%
Maximum Green (s)	10.0	68.0		53.0	53.0	53.0	32.0	32.0		32.0	32.0	32.0
Yellow Time (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0			0.0	0.0	0.0	0.0			0.0	0.0
Total Lost Time (s)	5.0	5.0			5.0	5.0	5.0	5.0			5.0	5.0
Lead/Lag	Lead			Lag	Lag	Lag						
Lead-Lag Optimize?	Yes			Yes	Yes	Yes						
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Minimum Gap (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	3.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
Recall Mode	None	C-Max		C-Max	C-Max	C-Max	None	None		None	None	None
Walk Time (s)		7.0		7.0	7.0	7.0	7.0	7.0		7.0	7.0	7.0
Flash Dont Walk (s)		11.0		11.0	11.0	11.0	11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (\#hr)		0		0	0	0	0	0		0	0	0
Act Effct Green (s)	80.7	80.7			68.1	68.1	19.3	19.3			19.3	19.3
Actuated g/C Ratio	0.73	0.73			0.62	0.62	0.18	0.18			0.18	0.18
v/c Ratio	0.21	0.36			0.49	0.10	0.19	0.14			0.57	0.23
Control Delay	2.7	2.8			13.8	2.4	40.6	23.9			51.6	10.3
Queue Delay	0.0	0.3			0.1	0.0	0.0	0.0			0.0	0.0
Total Delay	2.7	3.0			13.9	2.4	40.6	23.9			51.6	10.3
LOS	A	A			B	A	D	C			D	B
Approach Delay		3.0			12.3			31.3			36.6	
Approach LOS		A			B			C			D	
90th \%ile Green (s)	9.6	76.7		62.1	62.1	62.1	23.3	23.3		23.3	23.3	23.3
90th \%ile Term Code	Gap	Coord		Coord	Coord	Coord	Hold	Hold		Gap	Gap	Gap
70th \%ile Green (s)	8.1	80.9		67.8	67.8	67.8	19.1	19.1		19.1	19.1	19.1
70th \%ile Term Code	Gap	Coord		Coord	Coord	Coord	Hold	Hold		Gap	Gap	Gap
50th \%ile Green (s)	7.4	82.0		69.6	69.6	69.6	18.0	18.0		18.0	18.0	18.0
50th \%ile Term Code	Gap	Coord		Coord	Coord	Coord	Min	Min		Min	Min	Min
30th \%oile Green (s)	6.8	82.0		70.2	70.2	70.2	18.0	18.0		18.0	18.0	18.0
30th \%ile Term Code	Gap	Coord		Coord	Coord	Coord	Min	Min		Min	Min	Min
10th \%ile Green (s)	6.0	82.0		71.0	71.0	71.0	18.0	18.0		18.0	18.0	18.0
10th \%ile Term Code	Gap	Coord		Coord	Coord	Coord	Hold	Hold		Min	Min	Min
Stops (vph)	16	66			268	7	28	21			111	13
Fuel Used(gal)	0	2			8	1	1	0			2	0
CO Emissions (g/hr)	25	105			546	63	37	31			158	30
NOx Emissions (g/hr)	5	20			106	12	7	6			31	6
VOC Emissions (g/hr)	6	24			127	15	9	7			37	7
Dilemma Vehicles (\#)	0	0			0	0	0	0			0	0
Queue Length 50th (ft)	9	53			186	0	22	14			88	0
Queue Length 95th (ft)	23	74			324	22	50	44			146	39
Internal Link Dist (ft)		176			1180			304			304	
Turn Bay Length (t)						300	100					70
Base Capacity (vph)	575	1357			1121	952	315	506			386	498

Arterial Level of Service: EB Popham Road

Cross Street	Node	Delay $(\mathrm{s} / v e \mathrm{~h})$	Travel time (s)	Dist (mi)	Arterial Speed
Garth Road	2	6.0	26.1	0.2	24
Scarsdale Ave	3	6.4	15.9	0.1	18
Overhill Road	8	2.5	8.2	0.0	21
Total		14.9	50.1	0.3	22

Arterial Level of Service: WB Popham Road

	Node	Delay $(\mathrm{s} / \mathrm{ven})$	Travel time (s)	Dist (mi)	Arterial Speed
Cross Street	8	13.3	41.4	0.2	21
CCase Road	3	7.7	13.9	0.0	13
E Parkway	2	3.1	12.1	0.1	24
Depot Place		24.1	67.4	0.4	20

	$\stackrel{ }{ }$	\rightarrow					4	\dagger	7		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	$\stackrel{ }{ }$		\%	\uparrow		${ }^{7}$	F		${ }^{7}$	$\hat{}$	
Traffic Volume (vph)	15	557	53	90	549	24	79	6	107	20	4	29
Future Volume (vph)	15	557	53	90	549	24	79	6	107	20	4	29
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (t)	100		0	210		0	135		0	75		
Storage Lanes	1		0	1		0	1		0	1		
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.987			0.994			0.859			0.867	
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1839	0	1770	1852	0	1770	1600	0	1770	1615	
Flt Permitted	0.390			0.306			0.734			0.678		
Satd. Flow (perm)	726	1839	0	570	1852	0	1367	1600	0	1263	1615	
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		7			3			116			32	
Link Speed (mph)		30			30			30			30	
Link Distance (t)		891			422			387			247	
Travel Time (s)		20.3			9.6			8.8			5.6	
Confl. Peds. (\#hr)												
Confl. Bikes (\#hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	0	0	0	
Parking (\#/hr)												
Mid-Block Trafic (\%)		0\%			0\%			0\%			0\%	
Adj. Flow (vph)	16	605	58	98	597	26	86	7	116	22	,	32
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	16	663	0	98	623	0	86	123	0	22	36	
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		12			24			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		
Number of Detectors	1	0		1	0		1	1		1	1	
Detector Template												
Leading Detector (ft)	40	0		40	0		40	40		40	40	
Trailing Detector (ft)	0	0		0	0		0	0		0	0	
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	7	4		3	8		2	2		6	6	
Switch Phase												

	\downarrow	\rightarrow					4				\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	10.0	28.0		10.0	28.0		28.0	28.0		28.0	28.0	
Total Split (s)	10.0	79.0		11.0	80.0		30.0	30.0		30.0	30.0	
Total Split (\%)	8.3\%	65.8\%		9.2\%	66.7\%		25.0\%	25.0\%		25.0\%	25.0\%	
Maximum Green (s)	5.0	69.0		6.0	70.0		20.0	20.0		20.0	20.0	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	2.0	7.0		2.0	7.0		7.0	7.0		7.0	7.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)	5.0	10.0		5.0	10.0		10.0	10.0		10.0	10.0	
Lead/Lag	Lead	Lag		Lead	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Recall Mode	None	C-Max		None	C-Max		None	None		None	None	
Walk Time (s)		7.0			7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		11.0			11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (\#/hr)		0			0		,	0		0	0	
Act Effict Green (s)	86.0	75.2		90.8	82.7		12.8	12.8		12.8	12.8	
Actuated g/C Ratio	0.72	0.63		0.76	0.69		0.11	0.11		0.11	0.11	
v / c Ratio	0.03	0.57		0.20	0.49		0.59	0.45		0.16	0.18	
Control Delay	4.4	16.3		2.7	4.5		66.4	15.1		49.2	19.2	
Queue Delay	0.0	0.0		0.0	0.4		0.0	0.0		0.0	0.0	
Total Delay	4.4	16.3		2.7	4.8		66.4	15.1		49.2	19.2	
LOS	A	B		A	A		E	B		D	B	
Approach Delay		16.0			4.5			36.2			30.6	
Approach LOS		B			A			D			C	
90th \%ile Green (s)	6.3	69.0		7.6	70.3		18.4	18.4		18.4	18.4	
90th \%ile Term Code	Gap	Coord		Max	Coord		Gap	Gap		Hold	Hold	
70th \%ile Green (s)	5.9	72.0		7.8	73.9		15.2	15.2		15.2	15.2	
70th \%ile Term Code	Gap	Coord		Gap	Coord		Gap	Gap		Hold	Hold	
50th \%ile Green (s)	0.0	75.1		7.1	87.2		12.8	12.8		12.8	12.8	
50th \%ile Term Code	Skip	Coord		Gap	Coord		Gap	Gap		Hold	Hold	
30th \%ile Green (s)	0.0	78.0		6.5	89.5		10.5	10.5		10.5	10.5	
30th \%ile Term Code	Skip	Coord		Gap	Coord		Gap	Gap		Hold	Hold	
10th \%ile Green (s)	0.0	81.9		5.8	92.7		7.3	7.3		7.3	7.3	
10th \%ile Term Code	Skip	Coord		Gap	Coord		Gap	Gap		Hold	Hold	
Stops (vph)	5	351		9	76		74	21		19	12	
Fuel Used(gal)	0	8		0	3		2	1		0	0	
CO Emissions (g/hr)	10	573		28	197		120	56		24	18	
NOx Emissions (g/hr)	2	112		5	38		23	11		5	4	
VOC Emissions (g/hr)	2	133		6	46		28	13		6	4	
Dilemma Vehicles (\#)	0	0		0	0		0	0		0	0	
Queue Length 50th (tt)	2	277		8	59		65	5		16	3	
Queue Length 95th (ft)	9	444		m14	108		115	60		40	34	
Internal Link Dist (ft)		811			342			307			167	
Turn Bay Length (ft)	100			210			135			75		
Base Capacity (vph)	570	1155		501	1277		227	363		210	295	

	\Rightarrow	\rightarrow		\dagger			4	\uparrow	P		\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow	「	\%	$\hat{\square}$		\%	$\hat{}$		\%	\uparrow	「
Traffic Volume (vph)	160	454	70	42	500	42	40	90	50	45	70	155
Future Volume (vph)	160	454	70	42	500	42	40	90	50	45	70	155
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	250		210	110		0	100		0	0		135
Storage Lanes	1		1	1		0	1		0	1		1
Taper Length (t)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt			0.850		0.988			0.947				0.850
Flt Protected	0.950			0.950			0.950			0.950		
Satd. Flow (prot)	1770	1863	1583	1770	1840	0	1770	1764	0	1770	1863	1583
Flt Permitted	0.950			0.950			0.554			0.660		
Satd. Flow (perm)	1770	1863	1583	1770	1840	0	1032	1764	0	1229	1863	1583
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			200		4			22				245
Link Speed (mph)		30			30			30			30	
Link Distance (t)		422			256			479			463	
Travel Time (s)		9.6			5.8			10.9			10.5	
Confl. Peds. (\#/hr)												
Confl. Bikes (\#hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/r)	0	0	0	0	0	0	0	0	0	0	0	
Parking (\#/hr)												
Mid-Block Traffic (\%)		0\%		-	0\%			0\%			0\%	
Adj. Flow (vph)	174	493	76	46	543	46	43	98	54	49	76	168
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	174	493	76	46	589	0	43	152	0	49	76	168
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		24			24			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(f)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		
Number of Detectors	1	0	0	1	0		,	1		1	1	
Detector Template												
Leading Detector (t)	40	0	0	40	0		40	40		40	40	40
Trailing Detector (ft)	0	0	0	0	0		0	0		0	0	0
Turn Type	Prot	NA	Perm	Prot	NA		pm+pt	NA		Perm	NA	Perm
Protected Phases	7	4		3	8		5	2			6	
Permitted Phases			4				2			6		
Detector Phase	7	4	4	3	8		5	2		6	6	
Switch Phase												

	\rangle	\rightarrow					4	\uparrow	7		\dagger	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	9.0	18.0	18.0	5.0	18.0		5.0	18.0		18.0	18.0	18.0
Minimum Split (s)	14.0	28.0	28.0	10.0	28.0		10.0	28.0		28.0	28.0	28.0
Total Split (s)	25.0	69.0	69.0	13.0	57.0		10.0	38.0		28.0	28.0	28.0
Total Split (\%)	20.8\%	57.5\%	57.5\%	10.8\%	47.5\%		8.3\%	31.7\%		23.3\%	23.3\%	23.3\%
Maximum Green (s)	20.0	59.0	59.0	8.0	47.0		5.0	28.0		18.0	18.0	18.0
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0
All-Red Time (s)	2.0	7.0	7.0	2.0	7.0		2.0	7.0		7.0	7.0	7.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)	5.0	10.0	10.0	5.0	10.0		5.0	10.0		10.0	10.0	10.0
Lead/Lag	Lead	Lead	Lead	Lag	Lag		Lead			Lag	Lag	Lag
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		Yes			Yes	Yes	Yes
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0
Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0		3.0	3.0	3.0
Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	0.0
Recall Mode	None	C-Max	C-Max	None	C-Max		None	None		None	None	None
Walk Time (s)		7.0	7.0		7.0			7.0		7.0	7.0	7.0
Flash Dont Walk (s)		11.0	11.0		11.0			11.0		11.0	11.0	11.0
Pedestrian Calls (\#hr)		0	0		0			0		0	0	0
Act Effct Green (s)	16.4	63.6	63.6	7.5	52.6		31.0	26.0		18.0	18.0	18.0
Actuated g/C Ratio	0.14	0.53	0.53	0.06	0.44		0.26	0.22		0.15	0.15	0.15
v/c Ratio	0.72	0.50	0.08	0.41	0.73		0.14	0.38		0.27	0.27	0.38
Control Delay	86.1	15.9	0.2	44.0	14.8		33.8	36.4		49.6	48.2	3.2
Queue Delay	0.0	0.6	0.0	0.0	1.8		0.0	0.0		0.0	0.0	0.0
Total Delay	86.1	16.5	0.2	44.0	16.6		33.8	36.4		49.6	48.2	3.2
LOS	F	B	A	D	B		C	D		D	D	A
Approach Delay		31.1			18.6			35.8			22.6	
Approach LOS		C			B			D			C	
90th \%ile Green (s)	20.0	59.0	59.0	8.0	47.0		5.0	28.0		18.0	18.0	18.0
90th \%ile Term Code	Max	Coord	Coord	Max	Coord		Max	Hold		Max	Max	Max
70th \%ile Green (s)	19.5	59.0	59.0	8.0	47.5		5.0	28.0		18.0	18.0	18.0
70th \%ile Term Code	Gap	Coord	Coord	Max	Coord		Max	Hold		Max	Max	Max
50th \%ile Green (s)	17.0	59.0	59.0	8.0	50.0		5.0	28.0		18.0	18.0	18.0
50th \%ile Term Code	Gap	Coord	Coord	Max	Coord		Max	Hold		Max	Max	Max
30th \%ile Green (s)	14.5	59.0	59.0	8.0	52.5		5.0	28.0		18.0	18.0	18.0
30th \%ile Term Code	Gap	Coord	Coord	Hold	Coord		Max	Hold		Max	Max	Max
10th \%ile Green (s)	10.8	82.0	82.0	0.0	66.2		0.0	18.0		18.0	18.0	18.0
10th \%ile Term Code	Gap	Coord	Coord	Skip	Coord		Skip	Min		Min	Min	Min
Stops (vph)	157	157	1	41	306		29	99		39	62	2
Fuel Used(gal)	4	4	0	1	4		1	2		1	1	1
CO Emissions (g/hr)	293	268	17	48	308		41	147		58	90	47
NOx Emissions (g/hr)	57	52	3	9	60		8	29		11	17	9
VOC Emissions (g/hr)	68	62	4	11	71		9	34		13	21	11
Dilemma Vehicles (\#)	0	0	0	0	0		0	0		0	0	0
Queue Length 50th (tt)	139	139	0	37	67		25	84		34	53	0
Queue Length 95th (ft)	219	213	m0	m53	\#320		55	147		73	101	8
Internal Link Dist (t)		342			176			399			383	
Turn Bay Length (t)	250		210	110			100					135
Base Capacity (vph)	295	987	932	118	809		297	428		184	279	445

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\%	¢		${ }^{7}$	$\stackrel{1}{6}$		\%	¢			\uparrow	7
Traffic Volume (vph)	107	430	14	20	481	84	33	21	20	102	20	70
Future Volume (vph)	107	430	14	20	481	84	33	21	20	102	20	70
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (\%)		0\%			0\%			0\%			0\%	
Storage Length (ft)	110		0	100		0	100		0	0		70
Storage Lanes	1		0	1		0	1		0	0		1
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00		0.97	0.99		0.96	0.98			0.98	0.93
Frt		0.995			0.978			0.927				0.850
Flt Protected	0.950			0.950			0.950				0.960	
Satd. Flow (prot)	1770	1849	0	1770	1803	0	1770	1685	0	0	1788	1583
Flt Permitted	0.231			0.488			0.950				0.960	
Satd. Flow (perm)	430	1849	0	878	1803	0	1706	1685	0	0	1746	1465
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2			9			22				200
Link Speed (mph)		30			30			30			30	
Link Distance (t)		256			1260			384			384	
Travel Time (s)		5.8			28.6			8.7			8.7	
Confl. Peds. (\#/hr)	15		20	20		15	13		9	9		13
Confl. Bikes (\#hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/rr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/hr)												
Mid-Block Traffic (\%)		0\%			0\%			0\%			0\%	
Adj. Flow (vph)	116	467	15	22	523	91	36	23	22	111	22	76
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	116	482	0	22	614	0	36	45	0	0	133	76
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(ft)		24			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Number of Detectors	1	0		1	0		1	1		1	1	
Detector Template										Left		
Leading Detector (tt)	40	0		40	0		40	40		20	40	40
Trailing Detector (ft)	0	0		0	0		0	0		0	0	0
Turn Type	pm+pt	NA		Perm	NA		Split	NA		Split	NA	Perm
Protected Phases	7	4			8		2	2		6	6	
Permitted Phases	4			8								
Detector Phase	7	4		8	8		2	2		6	6	6
Switch Phase												

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Minimum Initial (s)	5.0	18.0		18.0	18.0		18.0	18.0		10.0	10.0	10.0
Minimum Split (s)	10.0	28.0		28.0	28.0		28.0	28.0		15.0	15.0	15.0
Total Split (s)	12.0	73.0		61.0	61.0		28.0	28.0		19.0	19.0	19.0
Total Split (\%)	10.0\%	60.8\%		50.8\%	50.8\%		23.3\%	23.3\%		15.8\%	15.8\%	15.8\%
Maximum Green (s)	7.0	63.0		51.0	51.0		18.0	18.0		14.0	14.0	14.0
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
All-Red Time (s)	2.0	7.0		7.0	7.0		7.0	7.0		2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0			0.0	0.0
Total Lost Time (s)	5.0	10.0		10.0	10.0		10.0	10.0			5.0	5.0
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes			Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Minimum Gap (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Time Before Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Time To Reduce (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Recall Mode	None	C-Max		C-Max	C-Max		None	None		None	None	None
Walk Time (s)		7.0		7.0	7.0		7.0	7.0				
Flash Dont Walk (s)		11.0		11.0	11.0		11.0	11.0				
Pedestrian Calls (\#/hr)		0		0	0		0	0				
Act Efft Green (s)	74.8	69.8		57.8	57.8		18.0	18.0			12.8	12.8
Actuated g/C Ratio	0.62	0.58		0.48	0.48		0.15	0.15			0.11	0.11
v/c Ratio	0.34	0.45		0.05	0.70		0.14	0.17			0.70	0.23
Control Delay	6.6	6.3		20.9	32.3		45.8	28.7			71.0	1.6
Queue Delay	0.3	0.3		0.0	0.8		0.0	0.0			0.0	0.0
Total Delay	6.9	6.5		20.9	33.1		45.8	28.7			71.0	1.6
LOS	A	A		C	C		D	C			E	A
Approach Delay		6.6			32.7			36.3			45.8	
Approach LOS		A			C			D			D	
90th \%\%ile Green (s)	7.0	63.0		51.0	51.0		18.0	18.0		14.0	14.0	14.0
90th \%ile Term Code	Max	Coord		Coord	Coord		Max	Max		Max	Max	Max
70th \%ile Green (s)	7.0	63.0		51.0	51.0		18.0	18.0		14.0	14.0	14.0
70th \%ile Term Code	Max	Coord		Coord	Coord		Max	Max		Max	Max	Max
50th \%ile Green (s)	7.0	63.0		51.0	51.0		18.0	18.0		14.0	14.0	14.0
50th \%ile Term Code	Max	Coord		Coord	Coord		Max	Max		Max	Max	Max
30th \%ile Green (s)	8.0	64.9		51.9	51.9		18.0	18.0		12.1	12.1	12.1
30th \%ile Term Code	Gap	Coord		Coord	Coord		Max	Max		Gap	Gap	Gap
10th \%ile Green (s)	5.9	95.0		84.1	84.1		0.0	0.0		10.0	10.0	10.0
10th \%ile Term Code	Gap	Coord		Coord	Coord		Skip	Skip		Min	Min	Min
Stops (vph)	18	131		12	444		28	22			116	0
Fuel Used(gal)	0	2		0	12		1	0			,	0
CO Emissions (g/hr)	32	152		24	819		39	34			194	16
NOX Emissions (g/hr)	,	30		5	159		8	7			38	3
VOC Emissions (g/hr)	7	35			190		9	8			45	4
Dilemma Vehicles (\#)	0	0		0	0		0	0			0	0
Queue Length 50th (tt)	16	67		10	401		25	16			100	0
Queue Length 95th (ft)	27	86		27	559		57	51			\#175	0
Internal Link Dist (ft)		176			1180			304			304	
Turn Bay Length (ft)	110			100			100					70
Base Capacity (vph)	348	1075		423	873		265	271			208	347

8: Overhill Road/Chase Road \& Popham Road PM Peak Hour

Scarsdale Mobility Plan

Arterial Level of Service: EB Popham Road

Cross Street	Node	Delay $(\mathrm{s} /$ /veh $)$	Travel time (s)	Dist (mi)	Arterial Speed
Garth Road	2	10.9	31.0	0.2	20
Scarsdale Ave	3	12.0	21.5	0.1	13
Overhill Road	8	3.7	9.4	0.0	19
Total		26.6	61.9	0.3	17

Arterial Level of Service: WB Popham Road

	Node	Delay $(\mathrm{s} / \mathrm{veh})$	Travel time (s)	Dist (mi)	Arterial Speed
Cross Street	8	24.6	52.2	0.2	16
Chase Road	3	9.7	15.8	0.0	11
E Parkway	2	2.5	11.5	0.1	25
Depot Place		36.8	79.5	0.4	17

SCARSDALE VILLAGE CENTER

PLACEMAKING PLAN
AN ELEMENT OF THE SCARSDALE STRATEGIC MOBILITY + PLACEMAKING PLAN

[^0]: Federal Highway Administration. Biecrle and
 Pedestrian Funding Opportuntites. https://Mwww.fhwa.d goverevironment bicycle_pedestrian/funding/fundin
 opportunities.c.fm

